Gliding Movements of Microtubule Driven by Kinesin Motors under External Force: Steering and Detachment

نویسندگان

  • Takahiro Nitta
  • Kouki Kawauchi
چکیده

Kinesin and microtubule have been utilized for applications, such as molecular communication. In this paper, we describe a computer simulation which reproduced movements of microtubules gliding over kinesin-coated glass surfaces under external force. The simulation qualitatively reproduced experimental results of microtubule movements under external force. This simulation would enable understanding of details of the gliding movements of microtubules under external force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion force induced collective motion of microtubules driven by kinesin.

Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal fila...

متن کامل

Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface

Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to ...

متن کامل

Directional loading of the kinesin motor molecule as it buckles a microtubule.

Single kinesin motor molecules were observed to buckle the microtubules along which they moved in a modified in vitro gliding assay. In this assay a central portion of the microtubule was clamped to the glass substrate via biotin-streptavidin bonds, while the plus end of the microtubule was free to interact with motors adsorbed at low density to the substrate. A statistical analysis of the leng...

متن کامل

Processivity of the Motor Protein Kinesin Requires Two Heads

A single kinesin molecule can move for hundreds of steps along a microtubule without dissociating. One hypothesis to account for this processive movement is that the binding of kinesin's two heads is coordinated so that at least one head is always bound to the microtubule. To test this hypothesis, the motility of a full-length single-headed kinesin heterodimer was examined in the in vitro micro...

متن کامل

Controlling self-assembly of microtubule spools via kinesin motor density.

Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 10(5) kT. Although these structures arise spontaneously in experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EAI Endorsed Trans. Self-Adaptive Systems

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015